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1. Introduction

Optimal design is always of great interest to engineers and scientists. More specifi-
cally, in the process of engineering design, when all the boundary conditions, aesthetic
requirements and other kinds of restrictions are specified, engineers need to design the
topology and geometry of an object to achieve its engineering properties and reduce its
cost in production.

We focus on topology optimization in this thesis. Different from shape optimization,
whose main task is to find the optimum boundary layout or form of a structure, topology
optimization owns a broader definition and it allows the change of material distribution
in the bulk of a structure. Both shape and topology optimization are constrained op-
timization problems, yet they are distinct from the standard constrained optimization
problems, because PDE constraints are involved, which is in a form of equilibrium. This
feature increases the complexity of an optimization problem, since a PDE constraint is
expensive to evaluate for each iteration in the course of optimization.

a) Sizing Optimization

b) Shape Optimization

c) Topology Optimization

Figure 1: Comparison of different optimization problems in structural design.

One of the most popular approaches to topology optimization is called SIMP (Simpli-
fied Isotropic Material with Penalization), which goes back to Bendsøe M.P. and Sigmund
O. [12]. It introduces a power function to penalize the intermediate state between mate-
rial and void. Simple as its concept is, it gives rise to problems such as mesh-dependence,
checkerboard pattern, local optimum and no sharp interface between material and void.
However, specific techniques are proposed to handle these issues. Due to the relative
maturity of this method, many commercial tools implement this method as a standard
approach [5] [49].

Parallelly, ESO type methods (Evolutionary Structural Optimization) were proposed
and grow to be an another popular approach. It follows the intuitive idea that weak parts
of a structure are to be removed. To determine whether an element is weak or not, a
sensitivity number is employed, which is based on a sensitivity analysis. Nevertheless,
the criterion using sensitivity number should prevent the optimization process falling into
a local optimum or non-optimum. This led to the development of the BESO method
(Bidirectional Evolutionary Structural Optimization), and other techniques such as soft
kill. In [28] the ESO method is shown to be inefficient and always ends in local optimum.
Hence BESO is always preferred in practice. After modification and improvement, the
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BESO method has already become a strong tool for structural design and contributed to
some applications in Civil Engineering [48]. A review paper by the proposer of ESO/BESO
method summarizes the techniques and improvement of this method [34].

The above two methods concern mainly the solid part of a structure. From the as-
pect of the evolution of the material-void or the material-material interface, the level set
method and phase field method come into play. The level set method was at first used
to characterize the complex boundary of an object and soon gained popularity in many
other engineering fields. Based on the Hamilton-Jacobi equation and sensitivity analysis,
the material interface can be driven to an optimal state. Initially this method was de-
veloped to solve shape optimization problems [2]. The association with the topological
derivative broadens its usage in topology optimization. This method was researched very
actively in recent years. The review paper [27] lists some variants of the level set method
and analyzes their features. Compared with the level set method, the phase field method
takes a different approach, i.e. defining a diffuse interface. The evolution of interface is
driven by the Allen-Cahn equation or the Cahn-Hilliard equation. Different formulations
were proposed in implementation. In Takezawa’s approach [70], the result of sensitivity
analysis is input in the source term of a diffusion reaction equation, while in Wallin’s
approach the sensitivity drives the evolution directly. Details of the phase field method
will be discussed in a later chapter of this thesis.

In the present thesis, phase field methods are investigated and compared. Their po-
tential in standard compliance optimization problems, thermomechanical optimization
problems and coupled field unit cell optimization problems are explored. Our formulation
of optimization problems is inspired by [70], [73] and [40].

The thesis is organized as follows: Chapter 2 introduces the basics of topology opti-
mization, Chapter 3 presents two phase field approaches, Chapter 4 gives our generlized
formulation and the topology optimization algorithm, numerical results are demonstrated
in Chapter 5, comments and summaries of the whole thesis are stated in the last Chapter.
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2. Basics of Topology Optimization

The pioneer work in topology optimization goes back to Bendsøe M.P. and Kikuchi N.
[11] who incorporated homogenization technique into topology optimization to charaterize
material properties. Since the proposal of the SIMP method by Sigmund and coauthors
[67], the field of topology optimization has attracted researchers from Mechanics and
Applied Mathematics. The development of SIMP method is greatly influenced by the
emergence of various techniques, such as regularization and filtering. Besides, the edu-
cational article [62], which presents the key concepts and implementation details of the
topology optimization in a compact way, introduces SIMP method to large audience in
academia as well as industry. New methods tackle the problem from a different angle,
i.e. the evolution of interface. Level set methods and phase field methods fall into this
category.

In this chapter the basic formulation of topology optimization problems is introduced.
We emphasize that the SIMP method and its techniques have many connections with other
methods. For this purpose, the concepts and techniques of SIMP method are reviewed
and discussed. Then we approach the topology optimization problem by describing the
evolution of interface. Two methods, the level set method and the phase field method are
presented. We close this chapter with a brief discussion of some specific issues, i.e. multi
objective optimization, manufacture constraints and multiscale optimization.

2.1. Problem Formulation

On a design domain D assume that we have a design variable ρ and our objective
function is F (u, ρ). As constraints we have a volume constraint c, an equilibrium equation
g(u, ρ) depending on the design variable (a PDE constraint) and constraints for design
variable written as an admissable set Ead. Additional constraints can be added in the
problem. With these definitions the topology optimization problem is formulated as (2.1).

min
ρ

F = F (u, ρ)

subject to Cvol(ρ) =
∫
D
ρ(x) dV − V0 ≤ 0,

g(u, ρ) = 0,
ρ ∈ Ead.

(2.1)

The design variable ρ can be any kinds, the most common ones are size parameters
for size optimization, geometry parameters for shape optimization and material density
function for topology optimization. Furthermore, the objective function F has a lot of
candidates ranging from the ubiquitous compliance objective function to the conversion
ratio in piezoelectrical energy harvesting elements [45]. Different from other types of
optimization problems, here we always have a partial differential equation as constraint.
For the admissable set of a design variable, in SIMP method it can be expressed with
bound constraints, i.e. 0 ≤ ρ ≤ 1, while in discrete type approaches such as ESO/BESO,
the design variable can only be either 0 or 1. Here we present the commonly discussed
compliance optimization problem, where the design variable is a material density function
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ρ and the concerned PDE constraint is expressed in a weak form.

min
ρ

F (u, ρ) =
∫
∂Ω

f · u dS +
∫
Ω
g · u dV

subject to Cvol(ρ) =
∫
D
ρ(x) dV − V0 ≤ 0,

aρ(u,v) = lρ(v), ∀v ∈ U,
0 ≤ ρ ≤ 1.

(2.2)

In the compliance minimization problem, the weak form aρ(u,v) = lρ(v), ∀v ∈ U corre-
sponds to the mechanical equilibrium of a linear elasticity problem written as,

−∇ · (Cρε(u)) = g in Ω,
u = 0 on ∂ΩD,

(Cρε(u)) · n = f on ∂ΩN .
(2.3)

Explicitly we can write the weak form as follows,
∫

Ω

ε(u) : Cρ : ε(v) dV =

∫

∂ΩN

f · v dS +

∫

Ω

g · v dV, ∀v ∈ U. (2.4)

The above formulation is given on the material domain Ω, where we have Dirichlet bound-
ary condition on ∂ΩD as well as Neumann boundary condition ∂ΩN . A sketch of design
and material domain is given in Figure 2. In the following sections we review the SIMP
method, level set method and phase field method. The essential techniques are shortly
discussed for each method.

Ω

D

Figure 2: Problem layout. Gray area is for material. The whole rectangular is our design
domain.

2.2. SIMP

The SIMP method was conceived by Bendsøe in the 80s [10]. The idea is simply
illustrated by its name Solid Isotropic Material with Penalization, where the penalization
for the intermediate state is introduced. By intermediate state, we mean 0 < ρ < 1.
When we only consider the interpolation between material and void, we have the following
expression

C(ρ) = ρpC0. (2.5)
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In this equation, ρ is the material density function, C0 is the material parameter and the
penalization is realized through a power function with respect to the material density,
where the order p is a constant which often takes the value 3. This order p can influence
the final pattern to a great extent [12]. Additionally, we have a minimum value ρmin, so
that for void the material parameter is Cmin, namely a fictitious material for void, hence
singularity is prevented when solving the PDE constraint on the whole design domain D.
It should be noted that the scale function ρp is for ρ ∈ [0, 1], while for other intervals we
need to offset the power function accordingly. This scheme can be easily extended to multi-
material optimization problems [82]. In comparison with (2.5), many other interpolation
schemes have been proposed, many of them account for a material parameter bound such
as Hashin-Strikman bound which is shown in [12].

A solution procedure for the implementation of SIMP is outlined in Figure 3. To
solve the PDE constraint, we first initialize the design domain with some pattern. Then
finite element analysis is applied to the current design pattern, followed by a sensitivity
analysis regarding the objective function and the PDE constraint. The purpose of the
sensitivity analysis is to obtain the derivative of objective function with respect to the
design variable, which is discussed in the following section 2.2.2. An updating step is then
carried out with the result of the sensitivity analysis. This step is combined with some
specific techniques to get rid of problems such as black-white checkerboard patterns. The
loop consisting of the finite element analysis, the sensitivity analysis, and the updating is
iterated till a stable and convergent pattern is found. This procedure is demonstrated in
the flow chart depicted in Figure 3.

Here we see that the whole scheme is an operator splitting scheme from a more general
viewpoint. Normally the whole constraint optimization problem is solved considering all
the constraints at once in an iteration. In the current scheme it is realized by splitting
the PDE constraint and other normal constraints. The PDE constraint is accounted at
the first place, then we generate the sensitivity of F with the result of PDE solution. By
observing the input and output variables of each step, this operator splitting can be seen
more clearly. Referring Figure 3, we first calculate the field variable u using ρ, then use u
to obtain dF

dρ
, and the next ρ is calculated by using dF

dρ
, i.e. ρ→ u→ dF

dρ
→ ρ, where dF

dρ
is

the derivative of the objective function obtained in the sensitivity analysis. This scheme
is also called Nested Analysis and Design (NAND). We stick to this scheme throughout
our work.

A Simultaneous Analysis And Design (SAND) is also possible, see [32], even for non-
linear structures [33]. However, only truss examples are considered in both publications
due to the enormous degrees of freedom. This method treats field variables also as vari-
ables of optimization problem and all the variables (including field variables) are solved
in one step in each iteration. It gives a clearer relation between the design variables and
field variables and allows the investigation of their respective function spaces under the
consideration of Ladyzhenskaya-Babuska-Brezzi condition. In addition, some general con-
strained optimization tools, e.g. interior point methods, as well as numerical techniques,
such as model reduction and domain decomposition, can be exploited (note that we can
also use them in the NAND scheme). This direction is still being explored by various
scholars. A recent paper [42] clarifies the relation between NAND and SAND. And a
general review is given in [6].

Technicality is involved when a practical problem is accounted. Problems such as mesh-
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Initial design
variable ρ0 and
parameters.

Begin loop

Solve PDE constraint with the cur-
rent ρ, obtain field variable u

Sensitivity analysis with u and ρ,
the result is dF

dρ

Update the design variable ρ via a
selected optimization algorithm

Converge?

End loop

Final design ρ⋆

no

yes

Figure 3: Steps of topology optimization under NAND scheme
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dependence, black-white checkerboard patterns, gray area in the optimization result etc.
may occur. However, they are overcome by various techniques, such as regularization and
filters. These techniques are presented in the section 2.2.3.

2.2.1. Optimality Criteria

The key step in the whole optimization procedure is the update of the design variable
ρ, while other steps such as the finite element analysis, and the sensitivity analysis are
rather standard. In order to drive the design variable to its optimal state, we need to
impose an optimality criterion for the updating of the design variable. This criterion is
often stated as Karush-Kuhn-Tucker condition (KKT), which is a necessary condition for
finding an optimal solution to the optimization problem [46]. Following the analysis in
the book [13], incorporating the PDE constraint into the formulation, we can construct
the Lagrangian as,

L = F − {aρ(u,v)− lρ(v)}+ Λ

(∫

Ω

ρ(x) dV − V0

)
+

∫

Ω

λ+(ρ(x)− 1) dV +

∫

Ω

λ−(ρmin − ρ(x)) dV,

(2.6)

where the second term is for the PDE constraint, the third for the volume constraint,
and the remaining for the bound constraints of the design variable. It is handled in the
first step of the loop in Figure 3. When the PDE constraint is solved, the second term
vanishes. The remaining terms give the KKT condition,

∇ρF + Λ∇ρCvol + λ+ + λ− = 0, (2.7a)∫

Ω

ρ(x) dV − V0 ≤ 0, ρ(x)− 1 ≤ 0, ρmin − ρ(x) ≤ 0, (2.7b)

Λ ≥ 0, λ+ ≥ 0, λ− ≥ 0, (2.7c)

Λ

(∫

Ω

ρ(x) dV − V0

)
= 0, λ+(ρ(x)− 1) = 0, λ−(ρmin − ρ(x)) = 0. (2.7d)

An updating scheme according to the KKT system is outlined in the book [13], which is
also implemented in the Matlab code [62]. According to [13] the design variable of the
next step is calculated by the following formula,

ρk+1 =





max {(1− ζ)ρk, ρmin} if ρkB
η
k ≤ max {(1− ζ)ρk, ρmin},

min {(1 + ζ)ρk, 1} if ρkB
η
k ≥ min {(1 + ζ)ρk, 1},

ρkB
η
k otherwise.

(2.8)

with Bk defined as,

Bk = −
∇ρF

Λ∇ρCvol

. (2.9)

This is a fixed-point algorithm, relating the Lagrange multiplier Λ and the change of
strain energy (detailed derivation can be found in [13]). The calculation of the new design
variable using the multiplication of the power of Bk lacks physical interpretation, and the
choice of parameters such as the move limit parameter ζ and the power parameter η varies
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from problem to problem. This updating scheme reminds us of the nonlinear gradient
projection method in [46].

Other schemes for the updating design variable can be constructed by using some
classical constrained optimization algorithm. [38] discusses and compares the application
of sequential quadratic programming (SQP), the method of moving asymptotes (MMA)
and optimality criteria (OC) in the topology optimization.

2.2.2. Sensitivity Analysis

In the general formulation of topology optimization problems as in (2.1), the objective
function is frequently expressed in terms of the physical state, i.e. the field variable in
the PDE constraint. Moreover the PDE constraint g(u, ρ) is an equation depending on
both the field variable u and the design variable ρ. Therefore the objective function is
implicitly a function of the design variable. To calculate the derivative of the objective
function with respect to the design variable, we need to perform a sensitivity analysis. A
brief introduction about the sensitivity analysis and the calculation of derivative can be
found in the chapter 8 of the book [46]. [20] gives a comprehensive discussion on this topic.
A recent paper about the second order sensitivity analysis [21] is also very informative.

Basically, there are two approaches for the sensitivity analysis – forward approach
and adjoint approach. In the current section, we present the adjoint approach, which is
proved to be efficient for topology optimization and used in our work. There are many
ways to derive the formula of the adjoint variable. We follow the one given in dolfin-
adjoint documentation [26]. Suppose that we have F (u, ρ) as an objective function, and
the PDE constraint is written as G(u, ρ) = 0. We know that the field variable u depends
on ρ. Differentiating the PDE with respect to the design variable ρ leads to,

∂G

∂u

du

dρ
+
∂G

∂ρ
= 0⇒

du

dρ
= −

(
∂G

∂u

)−1
∂G

∂ρ
(2.10)

The substitution of the above formula into the derivative of objective function yields,

dF

dρ
=
∂F

∂u

du

dρ
+
∂F

∂ρ

= −
∂F

∂u

(
∂G

∂u

)−1
∂G

∂ρ
+
∂F

∂ρ

= −λu
∂G

∂ρ
+
∂F

∂ρ
, (2.11)

with the adjoint variable λu solved by

(
∂G

∂u

)∗

λ∗u =

(
∂F

∂u

)∗

(2.12)

Note that
(
∂G
∂u

)∗
is the adjoint operator of bilinear form of the original PDE constraint.

Equation (2.12) is called the adjoint problem. If the PDE constraint is linear and its
bilinear form is symmetric, the adjoint problem is formulated by just replacing the linear
form in the weak form of the PDE constraint by

(
∂F
∂u

)∗
.
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2.2.3. Filters and Regularization

As mentioned above, many problems might appear in practice. Regularization and fil-
ters need to be included in the optimization scheme. The most severe difficulties encoun-
tered are mesh-dependence results, black-white checkerboard patterns and local minima.
Mesh-dependence means that the solution varies with different meshes, and black-white
checkerboard pattern is a pattern with alternating of material and void like a black-white
checkerboard, while the local minimum happens when output patterns change with dif-
ferent initial design patterns. The article [68] gives a clear review about each problem
and the corresponding strategies to circumvent them. The following table is a summary,
which is also presented in the review article.

Table 1: Numerical problems [68].

Checkerboard Mesh-dependence Local minima

Explanation Inappropriate
FE model

Minimal length scale,
Nonuniqueness

Nonconvexity

Techniques 1.High order elements
2.Filters
3.Patches
4.Restriction methods

1.Relaxation
2.Perimeter constraint
3.Gradient constraints
4.Mesh-independence
filters

Continuation methods

The available filters are listed below with their core expressions as well as their physical
interpretation.

Table 2: Filters and regularization techniques.

Core expression Interpretation

Perimeter con-
trol

TV (ρ) =
∫
D
|∇ρ| dx Control of total perimeter

Global gradient
constraint

‖ρ‖H1 =
(∫

D
(ρ2 + |∇ρ|2) dx

) 1

2 ≤M H1 norm of ρ

Local gradient
constraint

|
∂ρ

∂xi
| ≤ c

Pointwise control on deriva-
tive

Mesh indepen-
dent filter

∂̂f

∂ρk
=

1

ρk
∑N

i=1 Ĥi

∑N

i=1 Ĥiρi
∂f

∂ρi

Smoothing of sensitivity,
add lengthscale

Density filter C = (ρ ⋆ K)pC0 Filtering via convolution

Patch Method ρ̄ = 1
4
(ρ1+ρ2+ρ3+ρ4)φ

1+ v̄2φ
2+ v̄3φ

3 Superelement,
checkerboard-free basis

Intermediate
state control

g(ρ) =
∫
D
(ρu − ρ)(ρ− ρl)

S(ρ) =
∫
D
φ(·,x)ρ(x) dx

P = g ◦ S

Convolution and penalty
[18]

Morphology
based filter

Dilate, erode, close, and open operator Image based, eliminate gray
area [65]
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We realize that the global gradient constraint using L2 norm is very similar to what
we have for the interface energy in a phase field model, and the intermediate penalty
constraint is a variant of the double well potential. An available phase field energy is

Φ(ρ) =

∫

Ω

(
1

ǫ
ψ(ρ) +

ǫ

2
∇ρ · ∇ρ

)
dV. (2.13)

2.3. Level Set Method

The level set method is initially a method for representing the surface of an object.
It has many applications in various fields [58] such as computer graphics, computational
fluid dynamics etc. The idea of this method is to use a level set function to characterize
the surface of an object, and to describe the evolution of the surface by specific equations
such as Hamilton-Jacobi equation or Eikonal equation [59]. Its application in topology
optimization is proposed by Sethian [60] [50] and further developed by Wang, Allaire, etc.
They followed a traditional path of level set method, where a Hamilton-Jacobi equation
is specified for the evolution. Other researchers use the level set concept to construct
filters, such as [9]. Different from above Yamada and coauthors use the level set function
to characterize the interface, yet drives the evolution of interface via a diffusion reaction
equation [80]. This approach by Yamada and coauthor can be regarded as a transition
between level set methods and phase field methods, because of his usage of the level set
function and the diffusion reaction equation. A comprehensive review is given in [24].

φ > 0

φ < 0

φ = 0

Figure 4: Interface characterization via level set function. φ < 0 for material, φ = 0 for
material-void interface, and φ > 0 for void.

The shape representation is realized by a level set function φ, which is also our design
variable,





φ < 0 if x ∈ Ω,

φ = 0 if x ∈ ∂Ω ∩D,

φ > 0 if x ∈ D\Ω.

(2.14)

In the paper of Allaire [3], the “ersatz material” concept is used to map the level set
function onto the material properties and no interpolation is involved, which is different
from the standard SIMP scheme. After solving the PDE constraint we need to obtain
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the derivative of the objective function by the sensitivity analysis. Distinguishing from
the SIMP approach, the calculation of objective derivative is based on shape derivative or
topological derivative. In the meantime the volume constraint of the problem is addressed
with a Lagrange multiplier (fixed value in the [3], updated value with relaxation scheme
in [4]) and also included in the shape derivative. This derivative information then goes
into the Hamilton-Jacobi equation, specifically in the evolution velocity. Hence the shape
derivative or topology derivative and further the evolution velocity takes all the infor-
mation of the topology optimization into account. The corresponding evolution equation
for the level set function is Hamilton-Jacobi equation which is essentially a convection
equation,

∂φ

∂t
+ v|∇φ| = 0, (2.15)

where the velocity corresponds to the descent direction of the Lagrangian functional, i.e.
v = −∂φL(Ω), and L = F − λCvol.

The above evolution equation can be solved by various numerical schemes, such as
finite difference [3], finite element method [1] [4]. One problem about the level set method
is that instability occurs in some circumstances and we need to reinitialize the level set
function at times. This reinitialization is obtained with the Eikonal equation,





∂φ

∂t
+ sign(φ0)(|∇φ| − 1) = 0 in D × R

+,

φ(t = 0, x) = φ0(x) in D.
(2.16)

However this reinitialization is not compulsory. In [4] reasonable final pattern is obtained
without reinitialization.

The level set formulation from Allaire has the advantage of having clear boundary dur-
ing the simulation and it suits well with shape optimization. Since it cannot create holes
in the process of optimization, other terms, i.e. topology derivative should be added to the
formulation if a true topology optimization is considered. However, topology derivative
will increase the difficulty of problem modeling [47].

This direction of level set method to topology optimization has attracted a lot of
researchers, and has progressed with numerous results, see the review paper [27].

2.3.1. Yamada’s Approach

Yamada’s approach to topology optimization serves as a transition from level set
method to phase field method [80]. Different from Allaire’s approach he replaces the
evolution equation with a diffusion reaction equation. Specific Heaviside functions are
applied to the level set function in order to obtain the ersatz material feature from the
level set function. The Heaviside operator Yamada and coauthors used is as follows,

Hvol(φ) =





0 φ ≤ −1,

1

2
+
φ

2

(
15

16
−
φ2

4

(
5

8
−

3

64
φ2

))
−1 < φ < 1,

1 φ ≥ 1.

(2.17)

The volume constraint then becomes,

Cvol(φ) =

∫

D

Hvol(φ) dV − Vmax ≤ 0. (2.18)
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The diffusion-reaction like evolution behavior is described with the following equation,



∂φ

∂t
= K(φ)

(
τL2∇2φ2 + C ∂L

∂χφ

)
in D,

∂φ

∂n
= 0 on ∂D\∂DN ,

φ = 1 on ∂DN .

(2.19)

Here we have K(φ) as a diffusion coefficient, τ as an interface energy parameter, C as a
derivative normalizing parameter and L as a characteristic length. The derivative term of
the Lagrangian L with respect to χφ is a shape derivative same as in Allaire’s approach.
Yamada used augmented Lagrangian method to enforce the volume constraint, which is
elaborated in the educational review paper [51] with Matlab code.

This approach relates with the later proposed phase field formulation of Takezawa et al.
[70]. The advantage of this method is that it has a clear interface like the standard level set
method discussed above. Moreover hole nucleation can happen during the optimization
and the local optimum problem is lessened. One can also see the weakness of this method
immediately, i.e. too many parameters (K, τ, C). Searching for proper parameters is
always not easy in the course of simulation.

2.4. Phase Field Method
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Figure 5: Problem domain. The shaded area ξ is the material-void interface.

The phase field method stands as a method of describing phase separation and phase
evolution. The core idea of this method is to employ a specific free energy to drive the
evolution of the phases. The simulation of this method always ends in a diffusive interface
possessing a certain width, see Figure 5. In this way strong discontinuity is suppressed
and problems in computing phase field in the neighborhood of discontinuity is weakened.
The basic evolution equation of the phase flow can be different and is based on how we
describe the flow. In this section we list the basic evolution equation of the phase field
method, and we will discuss this method in detail in the next chapter. We denote ρ as
the order parameter in the phase field model, ǫ as the diffusion coefficient, then

ρt = ǫ∆ρ−
1

ǫ
ψ′(ρ), (x, t) ∈ D × (0, T ]. (2.20)

The energy ψ gives a double well potential, e.g. ψ(ρ) = 1
4
(ρ2 − 1)2 [22].
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2.5. Specific Issues

When it comes to real engineering problems, complicated constraints, various objec-
tives need to be considered. For these problems, specific strategies have been developed.

If multi-objective optimization problem is accounted, we need to clarify the relation
between the objectives and the importance of each objective. One possible strategy is
to decouple the objectives, multiply them with careful chosen weight parameters and
sum them up to form a total objective. Some compliant mechanism problems are multi-
objective optimization problems. In [63] [64] the authors defined the compliant synthesis
problem for micromechanical system (MEMS). Another representative work for multi-
objective optimization is given in [37]. For material design, it is always the case that
multiple objectives will arise and we refer to [69] for a standard formulation of this kind.

Multiphysics problems occur frequently in engineering. Many works mentioned above
have a multiphysics nature [63] [64] [37]. The essential part of this problem are complex
PDE constraints, which is a coupled PDE system. Following the standard procedure of
deriving the adjoint problem, it is found out that the adjoint problem for coupled fields
can be solved [63]. Other special constraints such as manufacture constraints are also
important. For example some part of the domain needs to be fixed or the designed object
is connected to an external object. Then how to model such an external object poses a
problem. This kind of restriction can be formulated as Dirichlet boundary condition for
the evolution step. In manufacturing, we needs the bar or thickness of a structure to have
a lower bound to meet the precision of manufacturing. This precision requirement can be
realized with specific filters which remove thin elements in end results [65] [66] [53].

Multiscale optimization problem is more intricate than the previously discussed ones.
The review [78] gives a comprehensive overview on multiscale optimization. There are
various types of problems and almost all of them are strongly related with homogenization.
Since the computation cost of a complete multiscale optimization problem accounting for
microstructures is prohibitive, extra techniques need to be applied, e.g. reduced basis
method [77] and parallelization [43] [44]. A more practical viewpoint may be assuming
an identical micro structure and decouple scales accordingly [35].
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3. Phase Field Approach

The phase field model was firstly introduced to solve solidification problems. Sub-
sequently, it gained popularity in many simulation fields such as fracture modeling [41],
and multiphase fluid dynamics [31]. The advantage lies in that phase field models handle
interface problems via a certain free energy and end with a diffusive interface. Its appli-
cation and formulation in continuum mechanics is attributed to Gurtin [30] [25]. Both
works formulate the thermodynamics of phase transformation. The derivation in [25] fits
especially well in the classical continuum mechanics formulation.

The application of phase field models to topology optimization problems became active
recently and is still drawing attentions of many researchers. This direction of topology
optimization is pioneered by [25] and followed by [75] [19] [16] [70] [73]. The potential of
phase field methods is validated by many numerical results in these papers. Moreover,
[15] points out its theoretical convergence and its theoretical relation with other types
of approaches to topology optimization. Many practical techniques in realization are
demonstrated in these publications.

The core idea of the phase field approach to topology optimization is to add the
interface energy as well as the double well potential in an objective function. These
two terms correspond with the global gradient constraint or L2 norm constraint and
intermediate state penalty as hinted above in the SIMP filter section, see Table 2. The
evolution of phase field is driven by Allen-Cahn equation or Cahn-Hilliard equation.

As for the topology optimization algorithm, we should notice that many of the existing
ones are gradient based, no matter whether it is written in a variational form or in a time
dependent reaction diffusion problem. Only the first order sensitivity of objective function
is gathered for the evolution step. This reveals the possibility of extension with respect
to second order sensitivity analysis or an approximation thereof. Constraints are handled
in a standard way such as by an augmented Lagrangian method or primal-dual active-set
type optimization.

This chapter mainly discusses two approaches after shortly introducing the basics of
phase field model. Takezawa’s approach makes use of a reaction diffusion equation, while
Wallin handles the problem using a variational formulation. Although these two methods
have different flavors, they both give some insights on solving the topology optimization
problem and lays the foundation of our generalized formulation in the next chapter.

3.1. Interface Representation

In a phase field model we have order parameters characterizing different phases and
the interface between phases can be represented in terms of the order parameters. We
denote ρ as the order parameter in the current phase field formulation, which is also the
design variable. This notation is somewhat different from the standard notation of phase
field model which uses φ or η.

In Table 3 Ω is the final geometry, Ω1, Ω2 represent two phases, ξ is the diffusive
interface between them.
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Table 3: Interface representation of level set method and phase representation
of phase field method.

Level Set Phase Field

ρ = 0 x ∈ ∂Ω ∩D

ρ < 0 x ∈ Ω

ρ > 0 x ∈ (D\(Ω ∪ ∂Ω))

ρ = 1 x ∈ Ω1

0 < ρ < 1 x ∈ ξ

ρ = 0 x ∈ Ω2

3.2. Phase Field Models

In a phase field model the order parameter is driven by a free energy [17]. A typical
one is as follows,

Φ(ρ) =

∫

Ω

(
1

ǫ
ψ(ρ) +

ǫ

2
∇ρ · ∇ρ

)
dV. (3.1)

The free energy Φ is also called Ginzburg-Landau energy with the first term representing
the bulk free energy density and the second term as an interface energy. The bulk free
energy ψ depends on temperature and is often approximated with a polynomial. An
available ψ under fixed temperature is the double well potential ψ(ρ) = 1

4
(ρ2 − 1)2. We

refer to the monograph [52] for an extensive discussion on phase field models.

Taking the variation of this free energy and setting this variational derivative as the
evolving direction delivers the Allen-Cahn equation,





ρt = ǫ∆ρ−
1

ǫ
ψ′(ρ) (x, t) ∈ D × (0, T ]

∂nρ|∂Ω = 0

ρ|t=0 = ρ0

(Allen-Cahn) (3.2)

Assumed that the order parameter is locally conserved, combined with the diffusion law
a higher order Cahn-Hilliard equation can be derived,





ρt = −∆

(
ǫ∆ρ−

1

ǫ
ψ′(ρ)

)
(x, t) ∈ D × (0, T ]

∂nρ|∂Ω = 0, ∂n

(
ǫ∆ρ−

1

ǫ
ψ′(ρ)

)∣∣∣∣
∂Ω

= 0

ρ|t=0 = ρ0

(Cahn-Hilliard) (3.3)

A detailed derivation can be found in [17].

Note that the free energy function (3.1) is related with the Lyapunov functional of
these two ordinary differential equations. Further it indicates the asymptotic stability of
the result. This properties are presented in [61]. Some numerical analysis is also given in
[61].

In topology optimization problems, we usually do not require local conservation.
Therefore Allen-Cahn equation is often used. [22] is a general review on phase field models
and the applications.
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Phase Field Models in Topology Optimization

As discussed and compared in the subsection 2.2.3, the double well potential in the phase
field energy serves as a penalization of intermediate state and the interface energy term
controls the width of diffuse interface. Hence it is reasonable to use the phase field model
in the topology optimization problem and it will eliminate the problems discussed in the
subsection 2.2.3.

In the later sections of this chapter and the next chapter, we show that there are in
fact two formulations to approach the topology optimization problem using phase field
models. One is to use the Allen-Cahn equation, which is basically a reaction diffusion
equation, where we input the information of optimization problem in the source term.
The other is to use variational formulation such as in [73], where the phase field energy
is incorporated in the Lagrangian of the optimization problem.

3.3. Takezawa’s Approach

The core evolution equation of Takezawa’s approach in [70] is,

∂ρ

∂t
= κ∆ρ−

∂Φ(ρ)

∂ρ
. (3.4)

The phase field energy Φ(ρ) is constructed as below,

Φ(ρ) = W (x)w(ρ) +G(x)g(ρ) (3.5)

with the definition,

w(ρ) = ρ2(1− ρ)2, g(ρ) = ρ3(6ρ2 − 15ρ+ 10). (3.6)

The plots of w(ρ) and g(ρ) are shown in Figure 6, and their composition Φ(ρ) in Fig-
ure 7.W (x) corresponds to ǫ in the phase field energy in (3.1) and is chosen as 1

4
, while

G(x) determines the direction of evolution and is calculated with the sensitivity of the
total Lagrangian,

G(x) = η
L′(ρt1)

‖L′(ρt1)‖
, with L = F + λcvol, (3.7)

where cvol ≤ 0, λ ≥ 0. The purpose of this construction is twofold, 1. penalize the
intermediate states using w(ρ), 2. penalize the evolution direction by multiplying g(ρ).
Plugging (3.5) (3.6) (3.7) into (3.4), we have the complete evolution equation,

∂ρ

∂t
= κ∆ρ+ ρ(1− ρ)

{
ρ−

1

2
− 30η

L′(ρt1)

‖L′(ρt1)‖
(1− ρ)ρ

}
, for (t1 ≤ t ≤ t2). (3.8)

The procedure of optimization is identical with the one for SIMP. The design variable
ρ is calculated using the finite difference method and in order to constrain the design
variable in the interval [0, 1] a semi-implicit scheme is proposed,

ρn+1
i,j − ρ

n
i,j

∆t
= κ

(
ρni−1,j − 2ρni,j + ρni+1,j

∆x2
+
ρni,j−1 − 2ρni,j + ρni,j+1

∆y2

)

+

{
ρn+1
i,j (1− ρni,j)r(ρ

n
i,j) for r(ρni,j) ≤ 0,

ρni,j(1− ρ
n+1
i,j )r(ρni,j) for r(ρni,j) > 0,

(3.9)
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Figure 6: Weight function w(ρ) and g(ρ).
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Φ(ρ) =W(x)w(ρ) +G(x)g(ρ)

η L
′
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Figure 7: Phase energy Φ(ρ).

with the following residual

r(ρni,j) = ρni,j −
1

2
− 30η

L′(ρt1)

‖L′(ρt1)‖
ρni,j(1− ρ

n
i,j). (3.10)

As for the volume constraint, we need to update the Lagrange multiplier. This is
performed by exploring the KKT system and the shape derivative based on the suggestion
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from Allaire [4]. The formula is as follows,

λn+1 = 0.5

(
λn +

∫
ξ
f(ρn) dV∫
ξ
ρn dV

)
+ εξ

(∫

D

ρn dV − V0

)
, (3.11)

with f being the integrand of the objective functional, i.e. F =
∫
D
f(ρ) dV , the integral

domain ξ the diffusive interface, V0 the prescribed volume, and εξ a positive parameter.

We point out that the update of Lagrange multiplier λ is somehow not cleanly defined.
It is borrowed from Allaire’s level set approach. Nevertheless, the original update in
[4] is also a mixture of terms from KKT system. We guess that the first term comes
from the solution of KKT system, and the second term stands for a penalty as in the
augmented Lagrangian method. Furthermore the introduction of shape derivative in the
update makes it harder to adapt the scheme to other kind of objective function. Later
we show that the enforcement of constraint can be treated using the standard augmented
Lagrangian approach.

To sum up, Takezawa’s approach takes many terms and composes them together to
achieve topology optimization. Modeling the evolution by taking (3.5) is very technical,
but still holds some physical meaning when observing the plot of its belonging terms.
This approach shares many features with Yamada’s approach [80] such as using reaction
diffusion equation as evolution equation. The semi-implicit scheme is efficient, yet needs
careful selection of the time step, where the CFL condition applies. The update of La-
grange multiplier is based on the one proposed by Allaire and Pantz [4] and is not well
analyzed. Besides that, many parameters have be tuned for the optimization problem. In
spite of the listed drawbacks, this method gives reasonable results and some of the diffi-
culties of topology optimization are alleviated. One thing to note is that the evolution of
the design variable via a reaction diffusion equation resembles a gradient-based method
in optimization.

3.4. Wallin’s Approach

Wallin and Ristinmaa formulates the topology optimization problem from a different
perspective [73]. The starting point of his approach is to formulate the total Lagrangian
considering all the constraints including the PDE constraint, which is analogous with the
equation (2.6),

L(ρ,u,λe,λt, λρ) = ηF (ρ,u) + Φ(ρ) +

∫

Ω

λe · (∇ · σ) dV +

∫

Ωt

λt · (t0 − σ · n) + λρ
(∫

Ω

ρ dV − V0

)
,

(3.12)

where the first term F (ρ,u) is the objective function, the second term Φ(ρ) is defined as
the phase energy, ∇ · σ = 0 corresponds to PDE constraint with its Neumann boundary
condition σ · n = t0 and the last term represents the volume constraint

∫
Ω
ρ dV − V0 ≤

0. The constant η in the Lagrangian is a weight parameter for the objective function,
and λe, λt, λρ are Lagrange multipliers for the corresponding constraints. The variation
of this total Lagrangian gives the stationary condition for all the variables. One key
step in the derivation is setting λe = 2ηu which is the adjoint variable expressed in an
explicit way. This definition is in the context of a compliance optimization problem. After
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the substitution of λe = 2ηu and grouping of the variables, the stationary condition is
obtained as

1

ǫ
ψ,ρ − ǫ∆ρ− 2η

g,ρ
g
w = −λρ, on D, (3.13)

with g(ρ) as a scaling function for material parameter interpolation, cf. (2.5), w as the
specific strain energy. The negative of variational derivative of Lagrangian is chosen as
the descent direction for the updating step of ρ, namely,

∫

Ω

ǫρ̇ξ dt = −
δL

δρ
(ξ). (3.14)

We bear in mind that the above equation is written in a variational derivative form.
Insertion of the variation of total Lagrangian and the evolution equation for the design
parameter ρ reads

ǫρ̇ = ǫ∆ρ−
1

ǫ
ψ,ρ + ηε : C ,ρ : ε− λ

ρ. (3.15)

In this formula we have ψ,ρ as the derivative of double well potential, C ,ρ as the derivative
of material tangent moduli, and ε as the linear strain measure. From this derivation, we
can see that the variation of the total Lagrangian is obtained first, which is similar with
SIMP method, then this variation is applied in an evolution equation as in the derivation
of phase field model in [76]. The sensitivity analysis or adjoint problem is avoided by the
direct definition λe = 2ηu for the compliance optimization problem.

Solving this evolution equation together with the bound constraint and volume con-
straint. Wallin et al. employed the Howard’s algorithm, which is a policy iteration scheme
for the double obstacle problem. Time and mesh size adaptivity are also included in their
numerical scheme. The extensions to multi material system and large strain problems are
also proposed in other work of Wallin et al., see [74] [72].

In conclusion, Wallin’s approach is a variational approach and it has strong connection
with the formulation of Allen-Cahn equation, i.e. equation (3.13) is actually Allen-Cahn
equation, and by equating (3.15) to zero we recover the stationary condition of (3.13).
Finite element method is employed when solving the evolution equation (3.15). The
constraints are imposed by Howard’s algorithm and can be replaced by other schemes.
Although we still have the weight parameter η and phase field parameter ǫ to be speci-
fied, the final result patterns show less dependency on the initial inputs. Moreover hole
nucleation is attained in the optimization.
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4. Numerical Formulation and Implementation

In this chapter we present our optimization scheme. The essential part of our scheme is
the time evolution of design variable. Our time evolution scheme stems from Takezawa’s
approach [70] and Wallin’s approach [73]. We reformulate these approaches adding gener-
alized weight parameters respectively. In the first step we compose the total Lagrangian
with the objective function, the phase field energy and the constraint. Then either an
incremental variational formulation or a formulation via reaction diffusion is carried out.
The incremental variational formulation is inspired by [40]. To account for the volume
constraint we employ the augmented Lagrangian method [46].

In the first part of this chapter we review the augmented Lagrangian method and
motivate for the time evolution of the design variable. Then a topology optimization
algorithm is set up and its relevant numerical details are clarified. This is followed by a
short presentation of the implementation concepts in FEniCS.

4.1. Augmented Lagrangian Method

The augmented Lagrangian method can enforce both equality constraints and inequal-
ity constraints efficiently [46] [29] and it is commonly used in large scale problems. Opti-
mization packages like LANCELOT are heavily based on this method. Here we present
the augmented Lagrangian method as a preparation for the later proposed topology op-
timization algorithm.

A constrained optimization problem can be easily turned into the following form (for
other kinds of constraints, we refer to [46] for transformation),

min
x∈Rn

f(x) subject to ci(x) = 0, i = 1, 2, . . . ,m, l ≤ x ≤ u. (4.1)

The equality constraints are then incorporated into the Lagrangian by constructing an
augmented Lagrangian as,

L(x, λ; µ) = f(x)−
∑

λici(x) +
µ

2

∑
c2i (x) (4.2)

Denoting λ as a vector of Lagrange multiplier we write the subproblem at the k-th iteration
(λk and µk are the parameters of the k-th iteration) as,

min
x
L(x, λk; µk) = f(x)− λTk c(x) +

µk
2
‖c(x)‖2 subject to l ≤ x ≤ u. (4.3)

Solving this subproblem requires us to make sure that the variable x stays in this
interval. Standard algorithms like the active set method, the interior point method, and
the gradient projection method can solve this type of problem efficiently [46].

Adding tolerance and scaling parameters we can formulate the problem in an adaptive
way as outlined in Algorithm 1. The Algorithm 1 is extracted from the book [46]. We
mention that the method for solving subproblem (4.3) can be replaced by other methods
such as interior point methods. Although the adaptation of the convergence parameter
is heuristic, it can stabilize the optimization. Because the penalty µk in the algorithm is
always larger than 1 and the convergence parameters ωk and ηk are always smaller than
1, tolerance is always shrunk at the end of each iteration. However, when the constraint
violation is large, the tightening of convergence parameters is eased.
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Algorithm 1 Bound Constrained Lagrangian Method [46]

Set penalty parameter µ > 0, scale factor τ > 1;
Set convergence tolerance η⋆, ω⋆ ≪ 1;
Choose initial parameters µ0 ← 10, ω0 ← 1/µ0, η ← 1/µ0.1

0 ;
k ← 0, converged← False, x← x0, λ← λ0;
repeat

Solve the subproblem (4.3) using projected gradient method with tolerance ωk
the solution is xk;
if ‖c(xk)‖ ≤ ηk then

(test for convergence)
if ‖c(xk)‖ ≤ η⋆ and tolerance ω⋆ satisfied then

x⋆ ← xk, converged← True;
end if

(update multipliers, tighten tolerance)
λk+1 ← λk − µkc(xk);
µk+1 ← µk;
ηk+1 ← ηk/µ

0.9
k+1;

ωk+1 ← ωk/µk+1;
else

(increase penalty, tighten tolerance)
λk+1 ← λk;
µk+1 ← 100µk;
ηk+1 ← 1/µ0.1

k+1;
ωk+1 ← 1/µk+1;

end if

k ← k + 1;
until converged

x⋆ ← xk;

4.2. Evolution of Design Variable

The crux of the topology optimization problem is its PDE constraint. We need to
enforce the PDE constraint in each iteration in our scheme as in Figure 3. Moreover, the
derivative of objective function is calculated through an expensive sensitivity analysis.
To avoid frequent evaluation of the PDE constraint and sensitivity analysis, we develop
a time evolution updating scheme. Based on the work in [70] and [73], two different
formulations with generalized weight parameters are proposed. Because we solve the
topology optimization problem only with the first derivative of objective function, the
evolution can be regarded as a gradient based search step.

In the following two subsections we present two formulations of the evolution step. One
is based on reaction diffusion equation [70], while the other is inspired by the variational
approach in [40].

4.2.1. Formulation Using Reaction Diffusion Equation

The comparison of Takezawa’s approach [70] and Yamada’s approach [80] discussed
in the subsection 2.3.1 and the section 3.3 respectively implies that the update of design
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variable via a reaction diffusion equation can be reformulated in a general way. We have

ρ̇ = ηξ∆ρ− fsrc, (4.4)

where ηξ is a diffusion coefficient, and fsrc stands for the source term of the reaction
diffusion equation.

By supplying different source terms in (4.4), we obtain different governing equations for
the evolution of design variable. Normally the source term fsrc contains the information
of optimization problem (objective function and contraints) and the penalization term of
intermediate state (can be a double well potential). The followings are candidate source
terms obtained from [80] [70] [73].

(Yamada [80]) fsrc = −K(φ)C
∂L

∂χφ
,

(Takezawa [70])
fsrc =

∂Φ(ρ)

∂ρ
=
∂ (W (x)w(ρ) +G(x)g(ρ))

∂ρ

with G(x) = η
L′(ρt1)

‖L′(ρt1)‖
,

(Wallin [73])
fsrc =

∂L∗

∂ρ

with L∗ = ηFF +
1

ǫ
ψ − λcvol,

(4.5)

As indicated in the above source terms fsrc is composed of objective function, constraints,
and a double well potential. We multiply each of them with a weight parameter, then a
generalized source term is written as follows

fsrc =
∂

∂ρ

(
ηFF + ηψψ −

∑
λici

)
, (4.6)

ηF , ηψ are the corresponding weights. λi are the Lagrange multipliers for volume con-
straints. ψ(ρ) is a double well potential, and ci is the integrand of a constraint (if this
constraint is defined on the whole domain using an integral, namely a volume constraint
defined in a form Ci =

∫
D
ci dV ). For the derivative of objective F , ∂F

∂ρ
we mean the local

form of sensitivity as in the appendix of [70]. The sensitivity of objective F with respect
to ρ is calculated with the PDE constraint via an adjoint approach as in (2.11).

With the constraints ci ≥ 0, and the Lagrange multipliers λi ≥ 0, the evolution of
design variable via a reaction diffusion equation is written in the following box,

solve ρ̇ = ηξ∆ρ− fsrc, in D,

with fsrc =
∂

∂ρ
(ηFF + ηψψ −

∑
λici) ,

|ρ| ≤ 1, ci ≥ 0.

(4.7)

The solution of the (4.7) is discussed in the subsection 4.3.2.
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4.2.2. Incremental Variational Formulation

In [40] the authors used an incremental variational formulation to characterize a time
dependent problem. Analogously the time dependent evolution in (4.7) can be trans-
formed into an incremental variational form. First we have an evolution equation as in
(3.14),

∫

D

ρ̇ζ dV = −
δLtop

δρ
(ζ). (4.8)

We extend the Lagrangian Ltop with a “dissipative” term D(ρ̇) = 1
2

∫
D
ρ̇2 dV ,

Π(ρ̇, λ) =
dLtop

dt
+D(ρ̇) (4.9)

The Lagrangian Ltop above is defined with

Ltop = ηFF + ηψ

∫

D

ψ(ρ) dV + ηξ

∫

D

1

2
∇ρ · ∇ρ dV −

∑
λiCi (4.10)

The variational of (4.9) is

δΠ

δρ̇
(ζ) =

δ

δρ̇

(
dLtop

dt

)
(ζ) +

δD(ρ̇)

δρ̇
(ζ),

=
δLtop[ρ̇]

δρ̇
(ζ) +

∫

D

ρ̇ζ dV,

=
δLtop

δρ
(ζ) +

∫

D

ρ̇ζ dV. (4.11)

It shows that solving the evolution equation (4.8) is equivalent with the variational prin-
ciple of (4.9), i.e. the δρ̇Π = 0.

In the following part we develop an incremental variational principle, where a time
step is considered and the variation of ρ̇ is replaced with variation of ρ. For tk → tk+1 the
integration of Π over time yields,

Πτ (ρ̇, λ) = Ltop − Ltop,k +

∫ tk+1

tk

D(ρ̇) dt (4.12)

We discretize the dissipative term, then we obtain

Πinc(ρ, λ) = Ltop − Ltop,k +∆tD(
ρ− ρk
∆t

), (4.13)

whose variation with respect to ρ reads,

δρΠ
inc(ρ, λ) = 0. (4.14)

The constraints are

|ρ| ≤ 1, Ci ≥ 0. (4.15)
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When ∆t→ 0, the variation δρ̇Π = 0 coincides with δρΠ
inc(ρ, λ) = 0. The above analysis

is summarized in a box below,

solve δρΠ
inc(ρ, λ) = 0, in D,

with Πinc(ρ, λ) = Ltop − Ltop,k +∆tD(
ρ− ρk
∆t

),

Ltop = ηFF + ηψ
∫
D
ψ dV + ηξ

∫
D

1
2
∇ρ · ∇ρ dV −

∑
λiCi,

|ρ| ≤ 1, Ci ≥ 0.

(4.16)

Referring [46], the formulation above can be regarded as a damped formulation with a
damping term defined by D(ρ̇).

The above problem in the box (4.16) is shown in the following subsection 4.3.2, where
we solve it together with an augmented term from augmented Lagrangian method.

4.2.3. Comparison of Formulations

The relation of the two formulations is revealed in the derivation below. In these two
formulation the terms with the same weight corresponds with each other and the rate
term ρ̇ corresponds with the dissipative term D(ρ̇), e.g.

ρ̇ ↔ ∆tD(
ρ− ρk
∆t

), ηξ∆ρ ↔ ηξ

∫

D

1

2
∇ρ · ∇ρ dV

The difference between (4.7) and (4.16) is also obvious. The reaction diffusion equation is
in a strong form at each domain point, while the variation of Π corresponds with a weak
form. Hence in the reaction diffusion equation, we have fsrc as a local expression and the
derivative for obtaining fsrc gives a value at each local point. This leads to our definition
of local form of sensitivity (F is always a global quantity defined with a integral), which
we refer to the appendix of [70]. On the other hand the terms of Πinc are expressed with
global quantities defined as an integral over the whole domain D. In our notation system
we have the lowercase character for the local variable and the uppercase character for the
global ones. One to one (local to global) pairs can be made for two formulations. An
example of this local to global pair is the volume constraint. Denoting Vfrac as a constant
representing the volume fraction, we have

cvol = ρ− Vfrac ↔ Cvol =

∫

D

(ρ− Vfrac) dV.

We can construct fsrc and Ltop in (4.7) and (4.16) in two different ways according to
[70] [73]. We denote TK10 for the source term and Lagrangian from [70] and WL13 for
[73]. The weight parameters for each terms are compared in Table 4.

In Table 4 the other term in TK10 is expressed with the following expressions,

G(x) = η
L′(ρk)

‖L′(ρk)‖
, g(ρ) = 6ρ5 − 20ρ3 + 30ρ. (4.17)



Numerical Formulation and Implementation 25

Table 4: Weight parameters for TK10 and WL13.

ηF ηξ ηψ Other

TK10 0 Const. 1
4

G(x)g(ρ)

WL13 Const. 1
ηψ

ηψ -

In G(x) η is a constant weight parameter, and L′(ρk) is the sensitivity of L evaluated at
the previous design variable ρk. This sensitivity is defined for each domain point (local
form of sensitivity). The Lagrangian functional L stands for the Lagrangian involving
objective function and the volume constraint, i.e. L = ηFF − λCvol. The norm in the
denominator is L2 norm of Lagrangian. We have modified the g(ρ), which is different from
[70] and the section3.3, because our bound constraint is defined with the interval |ρ| ≤ 1.
From the above definition of the extra term in TK10, we have seen that it calculates
the evolution direction from the sensitivity of Lagrangian, i.e. L′ and composes it with a
weight function g(ρ) coming from phase field models, such as in [17].

With the weight parameters in Table 4, we have the following source terms for the
formulation via reaction diffusion equation in (4.7). Supplying the terms into Ltop we
obtain the Lagrangian for TK10 and WL13. These are summarized in Table 5 and Table 6.

Table 5: Comparison of fsrc.

TK10 fsrc =
∂
∂ρ

(ηψψ +G(x)g(ρ))

WL13 fsrc =
∂
∂ρ

(ηψψ + ηFF − λcvol)

Table 6: Comparison of Ltop.

TK10 Ltop = ηψ
∫
D
ψ dV + ηξ

∫
D

1
2
∇ρ · ∇ρ dV +

∫
D
G(x)g(ρ) dV

WL13 Ltop = ηψ
∫
D
ψ dV + 1

ηψ

∫
D

1
2
∇ρ · ∇ρ dV + ηFF − λCvol

In the comparison of fsrc, the definition is slightly different from [70]. We use our
notation here, and the term ηψψ corresponds with the term W (x)w(ρ). The comparison
of λ (Lagrange multipliers) for TK10 and WL13 are not discussed here, for they are
updated according to a selected updating scheme. The numerical results according to
TK10 and WL13 are presented in the next chapter. A detailed comparison of TK10 and
WL13 is given in the appendix A.

4.3. Topology Optimization with Augmented Lagrangian Method

In this section we combine the concepts of augmented Lagrangian method in the
section 4.1 and the evolution formulation in the section 4.2 together to solve our topology
optimization problem.
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4.3.1. Topology Optimization Algorithm

For the general topology optimization problem presented in (2.1), we have three differ-
ent kinds of constraints, i.e. PDE constraint, volume constraint, and bound constraints.
Referring to the flowchart in Figure 3, we enforce these constraints separately. At first
the PDE constraint is evaluated with finite element analysis. After solving the adjoint
problem and calculation of the derivative of objective function, we solve the evolution
problem with the bound and volume constraints. The whole optimization problem is
formulated with an augmented Lagrangian and the augmented Lagrangian includes the
volume constraint shown below (µ is the penalty parameter),

L̂atop = ηFF + ηψ

∫

D

ψ dV + ηξ

∫

D

1

2
∇ρ · ∇ρ dV − λCvol +

µ

2
C2

vol, |ρ| ≤ 1. (4.18)

When we solve the evolution equation using the incremental variational formulation, we
only calculate the first order sensitivity of the objective function F , which means we have
the following approximation,

Latop = ηF

(
Fk +

∂F

∂ρ

∣∣∣∣
ρk

(ρ− ρk)

)
+ ηψ

∫

D

ψ dV + ηξ

∫

D

1

2
∇ρ · ∇ρ dV − λCvol +

µ

2
C2

vol.

(4.19)

In this expression, the term ∂F
∂ρ

∣∣∣
ρk

is the sensitivity of the objective F evaluated at the

previous design variable ρk.

As demonstrated in the section 4.1 in each iteration there is a subproblem as (4.3). For
the incremental variational formulation in box (4.16), we define the incremental functional
Πinc as

Πinc(ρ, λ; µ) = Latop − L
a
top,k +∆tD(

ρ− ρk
∆t

). (4.20)

Then for the incremental variational formulation the subproblem for the k-th iteration is
as follows,

δρΠ
inc(ρ, λk; µ) = 0 subject to |ρ| ≤ 1. (4.21)

If we formulate the subproblem with a reaction diffusion equation as in (4.7), then we
have the following subproblem

ρ̇ = ηξ∆ρ− fsrc,k with |ρ| ≤ 1, (4.22)

where the source term fsrc is augmented with a penalty term, namely,

fsrc,k =
∂

∂ρ

∣∣∣∣
ρk

(
ηFF + ηψψ − λcvol +

µ

2
c2vol

)
. (4.23)

The source term fsrc,k is evaluated at the previous design variable ρk. We refer to Table 5
for more specific expressions.

Additionally the sensitivity of objective F with respect to ρ, i.e. the derivative of
objective F is calculated via a sensitivity analysis. This step is accomplished with solving
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an adjoint problem, which we presented above in the subsection 2.2.2. If the subproblem
via reaction diffusion equation is solved, this sensitivity means a local form of sensitivity
as shown before. The derivative of objective F is also evaluated at the previous step ρk.

The whole algorithm is summarized in the box Algorithm 2. The adaptation of con-
vergence parameters are not carried out in Algorithm 2 as in Algorithm 1

Algorithm 2 Topology Optimization with augmented Lagrangian method

Set material parameters, geometry parameters;
Set weight ηF , ηψ, ηξ in (4.16) or (4.7), and time step ∆t, penalty parameter η;
k ← 0, converged← False, ρ← ρ0, λ← λ0;
repeat

Solve PDE constraint, obtain u;
Sensitivity analysis, obtain dF

dρ
;

Solve the subproblem (4.21) or (4.22), obtain ρk;
ρk+1 ← ρk;
λk+1 ← λk − µc(ρk+1);
k ← k + 1;

until converged

ρ⋆ ← ρk;

4.3.2. Numerical Solution of Subproblem

In this subsection we discuss about how to solve the subproblem (4.21) and (4.22)
numerically. There are two differences between the evolution equations and the subprob-
lems. One is the penalty term in terms of the volume constraint, e.g. in (4.21) there is an
extra term µ

2
C2

vol compared with the Lagrangian in (4.16). The other is the linearization
of the objective function F . We only consider the first order sensitivity when solving
(4.21) and (4.22).

A nonlinear solver can be applied when solving (4.21). We use the SNES solver from
PETSc package [7]. Supplying the SNES solver with a proper nonlinear equation and
its derivative is needed. The nonlinear equation is δρΠ

inc = 0. We employ the symbolic
system in FEniCS to obtain the derivative of other terms. Since the symbolic system (UFL
interface) in FEniCS cannot handle the derivative of the square of an integral effectively,
we approximate the second derivative of the penalty term µ

2
C2

vol with a mass matrix in
our implementation.

For (4.22), we discretize it with an implicit time scheme and express it in a weak form.
The following equation is derived,

∫

D

ρ− ρk
∆t

ζ dV = −

∫

D

ηξ∇ρ · ∇ζ dV −

∫

D

fsrc,kζ dV, ∀ζ ∈ U. (4.24)

The above equation (4.24) is solved by a standard finite element method. The source term
fsrc,k is evaluated at the previous design variable ρk, where the derivative of objective F
is the local form of sensitivity as mentioned before. After solving the evolution, we cut
the design variable to enforce the bound constraint |ρ| ≤ 1. The cut operation is carried
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out simply by the following expression,

ρ =





1 if ρ ≥ 1,

ρ if −1 < ρ < 1,

−1 if ρ ≤ −1.

(4.25)

Comparing two solution method to the subproblems (4.21) and (4.22), it is clear to
see that the source term fsrc is evaluated at ρk, while the terms in Lsrc in (4.22) is given
with the current design variable ρ. This is summarized in the tables below (Table 7 and
Table 8).

Table 7: Dependency of design variable in solving reaction diffusion equation.

∫
D

(
ρ−ρk
∆t

)
ζ dV

∫
D
ηξ∇ρ · ∇ζ dV

∫
D
fsrc,kζ dV

ρ, ρk ρ ρk

Table 8: Dependency of design variable in solving incremental variational
formulation.

∆tD(ρ−ρk
∆t

) ηFF ηψ
∫
D
ψ dV ηξ

∫
D

1
2
∇ρ · ∇ρ dV −λCvol +

µ

2
C2

vol

ρ, ρk ρk ρ ρ ρ

4.3.3. Choice of Parameters

Both of the proposed formulations have many parameters. Besides time step and
Lagrange multiplier, we have a weight parameter for each term in the formulation. For
supplying the weight parameters a natural idea is to make the evolution equation dimen-
sionless and let their contribution to the extended Lagrangian at the same level. Our
attempt is to compute the norm of the gradient of the objective function and choose
a weight for it such that the norm is in the same order with other terms, e.g. volume
constraint term.

We refer [70] and [80] to realize our normalization. The expression for the normaliza-
tion is

∥∥∥∥
∂ηFF

∂ρ

∥∥∥∥
L2

∼

∥∥∥∥
∂λcvol
∂ρ

∥∥∥∥
L2

. (4.26)

Note that the L2 norm is used here. It is important to note that the objective weight
calculated above only gives a recommended value, and sometimes it does not work.

The choice of the weight parameters is an important issue in topology optimization. It
affects the final design pattern as well as the convergence speed. Later we present plenty
of numerical examples for different parameters.

Other parameters besides the weight parameters are time step ∆t and the augmented
Lagrangian parameter λ, µ. For time step an adaptive scheme is helpful as discussed in
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[8]. Because of the semi-implicit character of our time stepping schemes, we select the
time step calculated from Courant-Friedrichs-Lewy condition (CFL) as a reference time
step. If we have a structured mesh, with element size ∆x and ∆y in each direction, then

κ

(
∆t

∆x2
+

∆t

∆y2

)
≤

1

2
, (4.27)

where κ is the weight of interface energy. According to the theory of augmented La-
grangian method in [46], it does not matter how we choose the Lagrange multiplier and
the penalty, yet more iterations are needed when the Lagrange multiplier and penalty
parameters are not wisely chosen. However when the initial values of the multiplier and
the penalty factor are not appropriate, convergence may take a prohibitive amount of
time. More comparison of different penalty parameters is presented in the later numerical
example chapter.

4.4. Overview of Implementation

4.4.1. FEniCS Framework

FEniCS is an open source finite element framework. The self-explanatory interface
makes it very handy for modeling and various linear algebra backends allow us to solve
problems efficiently.

The whole program of FEniCS is made up of three major parts. Each part represents
one or several functionalities. We express the mathematical model by UFL langugae.
Then with the help of form compiler (FFC), C++ code of the whole model is obtained.
The interface between symbolic code and numerical code is called UFC (Unified Form-
assembly Code). It can achieve efficient assembling of finite elements [39].

Figure 8: FEniCS Structure.

Numerical algorithms enter after the UFC interface. The main package that carries
the numerical algorithm is DOLFIN. DOLFIN’s task is to wrap functionalities of each
component and their interactions. DOLFIN itself has a C++ as well as a convenient
python interface.
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Other building blocks are e.g. mshr for geometrical modeling and mesh generation,
and FIAT (FInite element Automatic Tabulator) for automatic finite element generation
for arbitrary orders. Linear algebra backends provides the possibility of extension. The
postprocessing functionalities are also implemented in FEniCS, which allows us to view
plots in the course of simulation as well as to write results into files that can be visualized
by, e.g. ParaView.

4.4.2. Implementation Concepts

We separate the routines of problem definition and solution scheme and make each
functionality as independent as possible. The three main steps in the flowchart Figure 3
correspond to pde constr.py, adjoint prob.py and optimization scheme.py. In this
framework we can simply model a topology optimization problem and attribute a method
to solve the problem.

For the formulations of evolution we further define four classes:

1. OptForm, where all the symbolic and form expressions are stored;

2. OptProb, which subclasses the original;

3. OptSolver, which controls the link and work flow of evolution including adaptation;

4. OptScheme, which forms the unified interface for the approaches.

The solution of a nonlinear problem is achieved by subclassing the NonlinearProblem
with user defined derivative and Hessian. Regarding solving NonlinearProblem we can
use either SNES solver or TAO solver in PETSc [7]. These solvers can handle bound
constraint efficiently. It is also possible to define MixedFunctionSpace in FEniCS. This
allows us to solve the KKT system as in (2.7) directly. However this way of solving the
optimization problem still needs to be investigated for the current version 2016.1.
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5. Numerical Results

In this chapter we present the numerical results. At first, a cantilever compliance
problem is solved to validate our formulations and their corresponding numerical scheme.
The specific terms used in the validation are constructed according to TK10 and WL13
in the subsection 4.2.3. The contribution of different terms in the formulation is analyzed
in the validation. After the validation we compare results of different parameters and
thereby give suggestions on the choice of parameters.

Then we discuss the potential of these methods in other problems such as a 3D can-
tilever compliance optimization problem, a thermomechanical problem and a unit cell
optimization problem.

5.1. Cantilever Compliance Problem

5.1.1. 2D Cantilever Beam

The problem in this section is a 2D fixed end cantilever beam subjected to a point
load on the right end, see Figure 9. This is a typical benchmark problem suggested in
[13]. The result is a Mitchell-type structure [56]. In our problem the length of beam is
2, the height of beam is 1, and we have a load in the middle of right end of our beam.
Since applying a point load is not fully provided in FEniCS (PointSource works only for
scalar field), we approximate this load by a narrow line load on the specified point. The
illustration is given below in Figure 9. The load is 0.01. We use an isotropic linear elastic
material model. And the corresponding material parameter are set to E = 1, ν = 0.3
(Young’s modulus and Poisson’s ratio respectively), which have been also used in [70] and
[73].

1.
0

2.0

Figure 9: Benchmark problem layout.

The basic compliance optimization problem is described as follows,

min
ρ

F (u, ρ) =
∫
∂Ω

f · u dS

subject to Cvol(ρ) =
∫
D
ρ(x) dV − V0 ≤ 0,∫

Ω
ε(u) : Cρ : ε(v) dV =

∫
∂ΩN

f · v dS, ∀v ∈ U,

−1 ≤ ρ ≤ 1.

(5.1)

In this compliance problem there is no body force compared with (2.4) and the force f is
the force acting on the right end. The design variable is restricted in the interval [−1, 1]
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meaning ρ = 1 for material, ρ = −1 no material, and other values for intermediate states.
Moreover, the material parameters are interpolated with a scale function according to the
concept of SIMP method,

C(ρ) = g(ρ)C0, with g(ρ) = 1
8
(1 + ρ+ ρmin)

3, (5.2)

where we have 3 as the order parameter in the material interpolation scheme. ρmin is
a parameter to prevent singularity when solving PDE constraint on the whole design
domain.

Verification of Methods

Following the discussion in the subsection 4.2.3, we construct a specific source term in
the reaction diffusion equation and an augmented Lagrangian for the incremental varia-
tional formulation. Our double well potential is expressed with,

ψ(ρ) = (ρ2 − 1)2 (5.3)

Setting weight ηψ = 1
4
, the source term fsrc, from the following formula provided in the

subsection 4.2.3

fsrc =
∂

∂ρ
(ηψψ +G(x)g(ρ))

we obtain,

(TK10) fsrc = (ρ+ 1)(ρ− 1)
{
ρ+ 30η

L′(ρtk )

‖L′(ρtk )‖
(ρ+ 1)(ρ− 1)

}
(5.4)

In the above formulation we have L = ηFF − λCvol. Note that the L is slightly different
from what is given in the subsection 4.2.3 and in [70]. Here we apply an objective weight
ηF for the convenience of our implementation. From the formula of Ltop in subsection
4.2.3,

Ltop =
1

ηξ

∫

D

ψ dV + ηξ

∫

D

1

2
∇ρ · ∇ρ dV + ηFF − λ,

we have the augmented Lagrangian for solving the subproblem as in (4.19),

(WL13) Latop = ηF

(
Fk +

∂F

∂ρ

∣∣∣∣
ρk

(ρ− ρk)

)
+

1

ηξ

∫

D

ψ dV

+ηξ

∫

D

1

2
∇ρ · ∇ρ dV − λCvol +

µ

2
C2

vol.

(5.5)

Note that we use the weight parameter ηξ rather than ηψ in the formulation, since it is
more convenient for the later discussion.

Referring to [70] and [73] we choose the optimization parameters as in Table 9. Time

Table 9: Parameters for TK10 and WL13.

TK10 ηξ = 1× 10−3, η = 20, ηF = 1× 105

WL13 ηξ = 0.02, ηF = 1× 105

step and Lagrange multiplier are set as in Table 10 We mention that the time step ∆t
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Table 10: Optimization parameters for Algorithm 2.

TK10 ∆t = 0.02 λρ = −40, µ = 10

WL13 ∆t = 5× 10−5 λρ = −40, µ = 10

in the reaction diffusion equation is chosen referring to the time step calculated by CFL
condition ∆t = 0.1∆tcfl. And the time step in incremental variational approach is given
as in [73]. These time steps in the verification examples are also reference time steps for
the later examples.

By substitution of these parameters into our formulation, we have the following weight
parameters for the formulation (4.7) and (4.16). The weight of objective in the source term
of reaction diffusion equation is only an approximated value because of the normalization
of the objective function according to [70]. Through this comparison we find the similarity
in the selection of weight parameters in (4.7) and (4.16).

Table 11: Weight parameters in each formulation.

TK10 WL13

Objective ≈ 2× 106 105

Constraint 800 40

Double well 20 50

Interface 0.001 0.02

For the discretization, in the current example a structured triangular linear mesh
(100× 50, 104 elements )is used in the finite element analysis of PDE constraint as well
as in the evolution of the design variable.

As can be observed from Figure 10 and the evolution movie, incremental variational
formulation has more oscillation than the formulation using reaction diffusion equation.
It may be caused by the inexactness of second order derivative for the nonlinear problem.
This inexactness comes from the second derivative of the penalty term, where we approx-
imate it by a mass matrix. Figure 11 shows that both formulations have fluctuation with
respect to the volume constraint violation.

Concerning the contribution of terms in the incremental variational formulation, we
read from Figure 12 that when the optimization goes to stable state, the ηFF term is an
order higher than other terms. The stabilization is obtained in after 50 iterations.



34 Yi Hu

10 Iter10 Iter

30 Iter 50 Iter

50 Iter

70 Iter

100 Iter

100 Iter

150 Iter

200 Iter

a) b)

1.0-1.0

ρ

Figure 10: Verification of formulations, a) reaction diffusion equation (TK10), b) incre-
mental variational formulation (WL13).
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Figure 11: Comparison of formulations, reaction diffusion equation (TK10), and incremen-
tal variational formulation (WL13).
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∆tD(
ρ− ρn
∆t

)

−λCvol

µ
2
C2

vol

Figure 12: Term contribution in incremental variational formulation (WL13), Πinc =
ηFF

lin + ηψ
∫
D
ψ dV + ηξ

∫
D

1
2
∇ρ · ∇ρ dV − λCvol +

µ
2
C2

vol − Ltop,k +∆tD(ρ−ρk
∆t

).
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Different Initial Patterns

We prescribe the final volume as 0.5 of the design domain and show results for different
initial patterns. Four different patterns are listed, i.e. a homogeneous pattern with low
volume fraction, a homogeneous pattern with high volume fraction, a two hole initial
pattern, and a cheese-like pattern. This is for the test of local optimum problem of
optimization.

Initial Lagrange multipliers and their penalty parameters are the same across different
initial patterns. Optimization parameters for homogeneous initial states are consistent
with those in the method verification part except time step is adjusted (for better conver-
gence). For the initial states with holes we need to relax the ηξ in incremental variational
formulation by setting ηξ = 0.05. This relaxation means we have a wider diffusive interface
and the regularization effect of this term is greater than before.

a) b) c) d)

0 Iter 0 Iter 0 Iter 0 Iter

10 Iter 10 Iter

20 Iter20 Iter

20 Iter 20 Iter

30 Iter30 Iter

40 Iter

50 Iter 50 Iter

100 Iter

200 Iter

200 Iter 500 Iter

400 Iter

1.0-1.0

ρ

Figure 13: Comparison of different initial states (reaction diffusion equation, TK10), a)
homogeneous initial state with -0.4, b) homogeneous initial state with 0.7, c) initial state
with two holes, d) homogeneous initial state with many holes.

The result of the formulation using reaction diffusion equation shows: 1. different
initial patterns works, homogeneous initial states end in identical solution; 2. holes in
initial patterns will end in final patterns with different complexity, and the evolution is
related with the initial pattern; 3. holes can be created and removed; 4. iteration times



Numerical Results 37

changed with different initial patterns; the more complex is the initial states, the more
iterations we need to find the solution; 5. local minima effect.

a) b) c) d)

0 Iter 0 Iter 0 Iter 0 Iter

10 Iter 10 Iter 20 Iter

50 Iter50 Iter

50 Iter

100 Iter

100 Iter

100 Iter

100 Iter

150 Iter

200 Iter

200 Iter

200 Iter 200 Iter 300 Iter

1.0-1.0

ρ

Figure 14: Comparison of different initial states (incremental variational formulation,
WL13), a) homogeneous initial state with -0.4, b) homogeneous initial state with 0.7, c)
initial state with two holes, d) homogeneous initial state with many holes.

For the incremental variational formulation, similar remark can be made as for the
reaction diffusion scheme. For the example having many holes, the final state is almost
identical with the homogeneous cases. This might be due to high interface energy weight.

Different Meshes

Different meshes are compared in this section. This is especially important for some
cases where structured meshes will influence the evolution of design pattern and biased
evolution might occur. Optimization on a coarse mesh is useful, when we want to carry
out multi-resolution or multi-step optimization [14].

The parameters are the same, only time step is adapted for the formulation using
reaction diffusion equation, i.e. for coarse mesh, a smaller time step is used.

Both formulations perform good for different meshes. However for the unstructured
mesh, the final pattern has some slight difference with the structured ones, namely the
hole on the bottom is slightly smaller. In coarse mesh with the evolution using reaction



38 Yi Hu

a) b) c)

Mesh Mesh Mesh

10 Iter 10 Iter 10 Iter

30 Iter30 Iter 50 Iter

60 Iter 60 Iter

100 Iter

100 Iter

100 Iter 300 Iter

1.0-1.0

ρ

Figure 15: Comparison of different meshes (reaction diffusion equation TK10), initial states
are homogeneous with ρ = 0, a) coarse structured mesh 25 × 50, b) fine structured mesh
50× 100, c) unstructured mesh with approximately the same number of elements 10000 as
the fine structured mesh.

diffusion equation, instability is observed in 30 iteration, i.e. checkerboard pattern appear
in a small region. In contrary general optimization shows quite consistent results for
different meshes, only the pattern is blurred because of the coarsening.
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a) b) c)

Mesh Mesh Mesh

10 Iter 10 Iter 10 Iter

50 Iter 50 Iter 50 Iter

100 Iter 100 Iter100 Iter

150 Iter 200 Iter 300 Iter

1.0-1.0

ρ

Figure 16: Comparison of different meshes (incremental variational formulation, WL13),
initial states are homogeneous with ρ = 0, a) coarse structured mesh 25 × 50, b) fine
structured mesh 50 × 100, c) unstructured mesh with approximately the same number of
elements 10000 as the fine structured mesh.
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Effects of Different Parameters

Extensive comparison of parameters is given in this section. We first discuss the
construction of terms from TK10. The varied parameters are ηξ, η, ηF , µ. In each
comparison other parameters are fixed except the compared one. When the result diverges,
we reduce the time step accordingly.

We first compare the effect of different diffusion coefficients ηξ. [15] shows this pa-
rameter is related with the diffusive interface width. The smaller ηξ is, the thinner the
interface. All these observations are based on Figure 17.

a) b) c)

10 Iter10 Iter 10 Iter

30 Iter

50 Iter

50 Iter 50 Iter

70 Iter

100 Iter 100 Iter

100 Iter

200 Iter 200 Iter

300 Iter (not converged) 300 Iter (not converged)

1.0-1.0

ρ

Figure 17: Comparison of different ηξ (TK10), with unchanged other parameters and 0
initial state, a) ηξ = 0.0001, b) ηξ = 0.001, c) ηξ = 0.01.

η is a factor multiplied to the Lagrangian composed of objective function and constraint
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in (5.4) according to [70]. It balances the effects between the Lagrangian L and other
terms, e.g. interface, double well energy. A higher η will result in a clearer final state.
The smaller it is, the more diffusion will be present in the evolution.

a) b) c)

10 Iter10 Iter 10 Iter

30 Iter

50 Iter

50 Iter 50 Iter

70 Iter

100 Iter 100 Iter

100 Iter

200 Iter 200 Iter

300 Iter (not converged) 300 Iter

1.0-1.0

ρ

Figure 18: Comparison of different η (TK10), with unchanged other parameters and 0
initial state, a) η = 1, b) η = 20, c) η = 200.

The weight of objective function ηF in (4.7) is critical for optimization. c) in Figure 19
shows that high objective weight will blow up the design variable, since the homogeneous
state with value 1 will achieve the minimum compliance. After 50 iterations holes are
nucleated in the evolution in the c). The evolution in c) also reveals that too large weight
also harms the complexity of the final pattern. The results of other two cases are rather
identical.
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a) b) c)

10 Iter10 Iter 10 Iter

30 Iter 30 Iter

50 Iter50 Iter

50 Iter

70 Iter 70 Iter

100 Iter

100 Iter

100 Iter

200 Iter

300 Iter

1.0-1.0

ρ

Figure 19: Comparison of different ηF (TK10), with unchanged other parameters and 0
initial state, a) ηF = 1 × 103 (Lagrange multiplier and penalty is adjusted to stabilize the
simulation), b) ηF = 1× 105, c) ηF = 1× 107.

Figure 20 shows that the penalty µ has the least effect on the evolution. This is
consistent with the theoretical results for the augmented Lagrangian method [46].

Comparison of parameters in WL13 (incremental variational formulation) gives some
interesting insights on the problem. In Figure 21, smaller interface energy weight leads
to sharper interface. We hence conjecture that when this parameter ηξ → 0, a clear
separation of material and void can be obtained. This is coherent with the convergence
analysis in the paper [15]. Figure 22 demonstrates the influence of ηF . Similar with
TK10, the results of WL13 also shows that the objective function weight has effects
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a) b) c)

10 Iter 10 Iter 10 Iter

30 Iter 30 Iter 30 Iter

50 Iter 50 Iter 50 Iter

70 Iter100 Iter 100 Iter

100 Iter200 Iter 200 Iter

1.0-1.0

ρ

Figure 20: Comparison of different penalty parameters µ in augmented Lagrangian method
(TK10), with unchanged other parameters and 0 initial state, a) µ = 1, b) µ = 10, c) µ = 100.

on the complexity of final pattern. If too small weight is chosen, a spurious result is
generated, while larger weight gives more detail. The final pattern of the larger weight
case reminds us the pattern in [80], where different complexity is attained by tuning the
diffusion coefficient. In the last comparison of the incremental variational formulation we
see that the penalty parameter in augmented Lagrangian method also influences the end
result. This is not what we expected. The reason may lie in that we approximate the
second derivative of penalty term with a mass matrix.

Summary of Parameters

In this section we give a summary about the parameter choice. This is best presented
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a) b) c)

10 Iter10 Iter 10 Iter

50 Iter 50 Iter50 Iter

100 Iter 100 Iter100 Iter

150 Iter 150 Iter150 Iter

200 Iter 200 Iter 300 Iter (not converged)

1.0-1.0

ρ

Figure 21: Comparison of different ηξ (WL13), with unchanged other parameters and 0
initial state, a) ηξ = 0.02, b) ηξ = 0.05, c) ηξ = 0.2.

in the following Table 12 and Table 13. We use ‘+’ to represent a positive correlation, ‘-’
a negative correlation, ‘0’ for no obvious correlation, and ⋆ for not given. For example,
‘0, -, +’ for ηF means that ηF has no relation with the interface width, the larger the
parameter, the less complex the final pattern is, and the larger the parameter, the more
iteration number it needs to find the optimum state. It is important to note that this
summary is obtained from the numerical experience. More attention needs to be paid to
the theoretical aspect.
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a) b) c)

10 Iter10 Iter 10 Iter

50 Iter 50 Iter50 Iter

100 Iter 100 Iter100 Iter

150 Iter 150 Iter 200 Iter

200 Iter200 Iter (not converged) 300 Iter

1.0-1.0

ρ

Figure 22: Comparison of different ηF (WL13), with unchanged other parameters and 0
initial state, a) ηF = 1× 103, b) ηF = 1× 105, c) ηF = 1× 107.

5.1.2. 3D Cantilever Beam

In this part we solve the optimization problem for 3D cantilever beam. The layout
of the problem is presented in Figure 24. The problem formulation is the same as (5.1).
Material parameters are also the same, while the parameters for optimization are different
from the previous one and are given in Table 14.

And the optimization results are plotted in Figure 25. Both results are reasonable and
have good match with those in [70]. However, the evolution animations of both fine and
coarse mesh show some oscillation and the visualization is zigzagged by discrete elements.
One remedy for the zigzagged results is to have a finer mesh or apply post processing
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a) b) c)

10 Iter10 Iter 10 Iter

50 Iter 50 Iter 50 Iter

100 Iter 100 Iter150 Iter

150 Iter200 Iter 200 Iter

200 Iter300 Iter (not converged) 300 Iter

1.0-1.0

ρ

Figure 23: Comparison of different penalty parameters µ in augmented Lagrangian method
(WL13) with unchanged other parameters and 0 initial state, a) µ = 1, b) µ = 10, c) µ = 100.

on the result. The speed of 3D optimization falls down tremendously. Hence for 3D
optimization efficiency of the algorithm needs to be improved.
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Table 12: Parameters in TK10 (reaction diffusion equation).

Clear interface Complexity Iteration number

ηξ - + ⋆

η + ⋆ ⋆

ηF 0 - +

µ 0 0 0

Table 13: Parameters in WL13 (incremental variational formulation).

Clear interface Complexity Iteration number

ηξ - ⋆ +

ηF ⋆ + ⋆

µ 0 - ⋆

1.
0

1.
0

2.0

Figure 24: 3D cantilever problem layout.

Table 14: Optimization parameters for 3D cantilever.

Coarse mesh Fine mesh

WL13 TK10

direct solver iterative solver

ηξ = 0.1, ηF = 1× 106
ηξ = 0.001, ηF = 1× 106

η = 40

∆t = 0.0125 ∆t = 5× 10−5

λ = −4, µ = 1 λ = −4, µ = 0.2
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a.1)

a.2)

a.3)

b.1)

b.2)

b.3)
a) Coarse Mesh b) Fine Mesh

1.0-1.0

ρ

Figure 25: 3D cantilever beam, a) coarse mesh (WL13), 400th iteration, b) fine mesh
iterative solver (TK10), 64th iteration.
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5.2. Thermomechanical Problem

We consider a thermomechanical problem. This example is given in many publications,
such as [71], [54], [81], and [79]. Among them the second one [54] is the earliest work on
this problem which also includes homogenization technique. The last paper [54] employs
the level set approach to tackle the problem. The first publication [71] is a master thesis
on this topic including an extensive review and some engineering examples.

The layout of this basic problem is rendered in Figure 26, where a two side clamped
beam is considered. The material model is written as below,

ε =
1

E
[(1 + ν)σ − ν tr(σ)I] + α∆T I. (5.6)

A simple thermal induced stress is added. This thermal stress depends on the change of
temperature ∆T . The material properties are set as follows E = 1, ν = 0.3, α = 5×10−4.
A crossed triangular structured mesh is generated. We start from the homogeneous pat-
tern with value 0 (an intermediate state, |ρ| ≤ 1) and optimize the topology under different
temperature difference. Besides the current target is still the minimum compliance (5.1).

We employ the incremental variational formulation, and the selected parameters are
ηξ = 0.05, ηF = 1× 103, except that for ∆T = 100 we have ηF = 1× 104. The time step
and Lagrange multiplier are set ∆t = 6.25× 10−4, λ = −4, µ = 10 respectively.

1.
0

2.0

∆T

Figure 26: Thermomechanical problem layout.

The results are shown in Figure 27. And these results are consistent with the results
given in [54]. In the process of evolution, we also observe the oscillation of states. This
could be fixed by tuning a weaker penalty µ or a smaller time step.
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a) b) c) d)

10 Iter 10 Iter 10 Iter 10 Iter

20 Iter

30 Iter

30 Iter

40 Iter

50 Iter 50 Iter

50 Iter

60 Iter

90 Iter

100 Iter100 Iter

150 Iter 150 Iter

200 Iter 200 Iter 200 Iter

1.0-1.0

ρ

Figure 27: Comparison of different ∆T (WL13), a) ∆T = 0, b) ∆T = 50, c) ∆T = 100,
d) ∆T = 200.
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5.3. Coupled Electro-mechanical Unit Cell Optimization

At last we present a coupled-field unit cell example. The sketch of this problem is
given in Figure 28 showing a unit square with fixed corners and two pairs of periodic
boundary conditions. We consider a two-material topology optimization problem.

1.
0

1.0

Figure 28: Unit cell optimization problem layout, with 4 fixed corners and periodic bound-
ary condition for pairing edges.

We use a Neo-Hookean type electroactive polymer material, as in [36],

ψ (C,E) =
1

2
µ (tr[C]− 3) +

λ

4

(
J2 − 1

)
−

(
λ

2
+ µ

)
ln J −

1

2
ǫ0

(
1 +

χ

J

)
J
[
C−1 : (E⊗ E)

]
,

(5.7)

where λ and µ are Lamé constants and χ is the electric susceptibility. ǫ0 is the electric
permittivity in vacuum and taken as 8.85× 10−12. The variable in this material model is
C (right Cauchy-Green tensor), J defined as detF (F is the deformation gradient tensor),
and E the electric field. The two materials in our example are a stiff material with high
electric susceptibility representing metal phase, and a soft material phase with relative
low electric susceptibility such as rubber. We use a simple material interpolation (5.8)

Table 15: Material parameters of unit cell.

Young’s Modulus Poisson Ratio Electric Susceptibility

Soft material phase 1 0.3 7

Metal phase 1000 0.4 700

with a scaling function. For other multi material interpolation reader can refer to [12].

E = g(ρ)Esof + (1− g(ρ))Emet,

ν = g(ρ)νsof + (1− g(ρ))νmet,

χ = g(ρ)χsof + (1− g(ρ))χmet.

(5.8)
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“sof” in the subscript stands for soft rubber-like material and “met” for metal-like mate-
rial. g(ρ) is given in (5.2).

The formulation of the PDE constraint follows the one in [57]. The details can be
viewed in this paper. We use homogenization technique [23]. We denote (·) as the

averaged macro field variable and (̃·) as the micro field fluctuation. The macro field
variables are taken as F, E. Boundary conditions for this problem is a periodic one,
meaning the field variable ũ, φ̃ match for the opposite edges. In order to prevent the
rigid body displacement, we prescribe the corners to be fixed. Linear triangular finite
element is used for the analysis of both PDE constraint and evolution step. The mesh
is a crossed structured mesh presented below and the element size is 1/30, and in total
30× 30× 4 = 3600 elements are in use. We input the following macro field variable.

F =

[
1 0

0 1

]
,E =

[
0

0.2

]

Our goal in this type of optimization problem is to achieve a microstructure design
as in [69]. We considered a simplified topology optimization problem. Under a specific
input of the macro electric field, we maximize the traction on the upper bound of this
representative element. The physical meaning is that, we want to achieve the largest
mechanical response under the macro averaged electric field. The complete optimization
problem is stated as follows,

min
ρ

F (u, ρ) = −
∫
∂Ωu

(Pn) · n dS

subject to Cvol(ρ) =
∫
D
ρ dV − V0 ≤ 0,

G(u, ρ) = 0 (Nonlinear PDE),

−1 ≤ ρ ≤ 1.

(5.9)

We write the objective function with respect to the first Piola-Kirchhoff stress tensor
P. In the expression n is the normal vector of the surface, so (Pn) · n is the normal
component of surface traction. With the integration we obtain the averaged traction over
the upper bound. The current PDE constraint is a nonlinear PDE with macro field input
under periodic boundary constraint. We refer to [57] for details. We denote ∂Ωu as the
upper bound of the unit cell.

Various initial patterns are solved using the incremental variational formulation. Op-
timization parameters are given in (5.10). The volume of metal phase is constrained to
be 50 % of the design domain.

ηξ = 0.05, ηF = 1, ∆t = 0.0022, λ = −1, µ = 4. (5.10)

Note that we have used a time step as 0.2∆tcfl and tcfl is defined in (4.27).

If we fix the volume and let SNES handle the Lagrange multiplier internally, we can
achieve optimum state very fast. In contrary, there is more oscillation in the incremental
variational formulation. This oscillation is caused by the augmented Lagrangian algo-
rithm, where each iteration the Lagrange multiplier is approximated using the penalty
parameter and the current constraint value. If the right Lagrange multiplier is supplied
initially, the design variable can converge to the optimum state very fast without or with
just minor oscillation.
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Mesh 2 Iter

4 Iter 6 Iter

1.0-1.0

ρ

Figure 29: Unit cell optimization (WL13), fixed volume optimization, Lagrange multi-
plier is accounted internally in SNES, two materials, 0.5 volume fraction of one material is
specified.

For different initial patterns, we have the same final result. The optimization process
shows that in this problem, the design variable is firstly diffused to all -1. Then an
identical optimization process is carried out till the optimum is reached.
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a) b) c)

0 Iter0 Iter0 Iter

10 Iter10 Iter10 Iter

50 Iter50 Iter50 Iter

100 Iter100 Iter100 Iter

200 Iter200 Iter200 Iter

1.0-1.0

ρ

Figure 30: Comparison of different initial states for unit cell optimization (WL13), a)
homogeneous initial state with 0, b) initial state with a central hole, d) initial state with
many holes.
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6. Conclusion

In this thesis classical SIMP method and its techniques were reviewed at first, then we
briefly discussed about the level set method and moved on to the phase field approach.
Two different formulations of the phase field approach are analyzed, namely Takezawa’s
approach [70], and Wallin’s approach [73]. Based on them two generalized formulations
(4.7) and (4.16) are given. Furthermore the augmented Lagrangian method and Algo-
rithm 1 are adjusted and applied to these formulations. With two topology optimization
algorithms in Algorithm 2 and Algorithm ??, we first verified the methods with the basic
cantilever compliance problem, then discussed about the parameter choice of both formu-
lations extensively. A 3D cantilever problem, a thermoelastic problem, and a coupled-field
unit cell optimization problem have also been considered.

We show that the phase field approach for topology optimization is a valid approach
and can be further applied to more complex problems. Problems such as checkerboard
patterns and reinitialization occurring in the standard SIMP and the level set method are
alleviated. We include a phase field energy consisting of double well potential and interface
energy in the Lagrangian. These two parts of phase field energy play different roles in the
optimization (discussed in 2.2.3) – the double well potential can be regarded as a penalty
for the intermediate state, the interface energy term is a global constraint, which will
regularize the optimization problem. Moreover an incremental variational formulation
inspired by [40] is developed. Compared with the standard optimization formulation in
the SIMP method, the incremental variational formulation can be deemed as a damped
optimization problem (see in 4.2.2) and allows us to make stabler progress in the course
of optimization. Besides, the augmented Lagrangian method is applicable in the context
of topology optimization.

The weaknesses of the phase field approach can also be seen immediately. The primal
one is too many parameters. It is not trivial to obtain an appropriate weight for each
term in the formulation (4.7) and (4.16). Techniques should be invented to circumvent
this problem. Another problem comes from the nature of augmented Lagrangian method.
As can be seen in 5.1.1 and Figure 11 the result tends to oscillate when the Lagrange
multiplier and the penalty is not wisely chosen. Hence a careful choice of Lagrange
multiplier and penalty parameter to achieve faster and stabler convergence.

Many improvements can be made to the current approaches. The crucial one is scal-
ing. If a good scaling can be found, it will guide our choice of weight of each term in
(4.7) and (4.16) and finally resolve the problem of parameter setting. As revealed in the
previous chapter of numerical results, the weight parameters relates strongly with the
complexity of the end design pattern. Hence continuation schemes can be developed.
A feasible idea is to first make the problem well-posed by choosing proper parameters,
then adapt the parameters so that sharp interface or hole nucleation is achieved. [68]
gives some reflection on continuation method in its later part, and recent work about the
continuation method is given in [55]. The theoretical support of the continuation method
is from [15], where the sharp interface limit of phase field approach is proven. Another
possibility of improvement is to develop more precise numerical schemes. We can include
the second order sensitivity analysis in our optimization algorithm, although it is still a
challenge to compute it correctly and efficiently. At least some approximated second order
sensitivity information can be obtained by Hessian approximation using BFGS. When it
comes to large scale problems, one is always cautious about efficiency. This urges us to
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include modern numerical techniques in topology optimization such as homogenization
with respect to a unit cell, model order reduction and parallelization.
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A. Detailed Comparison of TK10 and WL13

Table 16: Comparison of fsrc.

TK10 fsrc =
∂

∂ρ
(ηψψ +G(x)g(ρ))

WL13 fsrc =
∂

∂ρ
(ηψψ + ηFF − λcvol)

In the subsection 4.2.3, we have the comparison summarized in the above tables. The
definition of G(x) and g(ρ) are given below,

G(x) = η
L′(ρk)

‖L′(ρk)‖
, g(ρ) = 6ρ5 − 20ρ3 + 30ρ, (A.1)

with the Lagrangian L defined as L = F − λCvol Hence the main difference lies G(x)g(ρ)
in TK10 and ηFF − λcvol in WL13. We have for TK10,

∂

∂ρ
(G(x)g(ρ)) = η

L′(ρk)

‖L′(ρk)‖

∂g(ρ)

∂ρ
= η

∂ρg(ρ)

‖L′(ρk)‖

(
∂F

∂ρ

∣∣∣∣
ρk

− λ
∂cvol
∂ρ

∣∣∣∣
ρk

)
. (A.2)

Meanwhile we obtain the derivative of ηFF − λcvol in WL13,

∂

∂ρ
(ηFF − λcvol) = ηF

∂F

∂ρ

∣∣∣∣
ρk

− λ
∂cvol
∂ρ

∣∣∣∣
ρk

. (A.3)

The partial derivative of objective F in the above two derivations represent the sensitivity
of F in the sense of local form as in the appendix of [70]. Both of them are evaluated at the
previous design variable ρk meaning a linearization of the objective F , which is discussed
in the section 4.3. The difference in the weight of two derivatives can be summarized in
the following table. We realize that the weights in TK10 have a part depending on the
previous design variable ρk. It determines the effect of the gradient of objective function
and constraint respectively.

Table 17: Comparison of weights.

∂F
∂ρ

−∂cvol
∂ρ

TK10 η ∂ρg(ρ)

‖L′(ρk)‖
η ∂ρg(ρ)

‖L′(ρk)‖
λ

WL13 ηF λ
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[31] Gurtin, M.E.; Polignone, D.; Viñals, J. [1996]: Two-phase binary fluids and
immiscible fluids described by an order parameter. Mathematical Models and Meth-
ods in Applied Sciences, 06(06): 815–831.

[32] Haftka, R.T. [1985]: Simultaneous analysis and design. AIAA Journal, 23(7):
1099–1103.



60 Yi Hu

[33] Haftka, R.T.; Kamat, M. [1989]: Simultaneous nonlinear structural analysis and
design. Computational Mechanics, 4(6): 409–416.

[34] Huang, X.D.; Xie, Y. [2010]: A further review of ESO type methods for topology
optimization. Structural and Multidisciplinary Optimization, 41(5): 671–683.

[35] Kato, J.; Yachi, D.; Terada, K.; Kyoya, T. [2013]: Topology optimization of
micro-structure for composites applying a decoupling multi-scale analysis. Structural
and Multidisciplinary Optimization, 49(4): 595–608.
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